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Abstract

Talbot (Journal of Structural Geology 21, 1535±1551, 1999b) introduced a new model for ductile shear zones as counter¯ow boundaries in

pseudoplastic power-law ¯uids, and demonstrated that natural shear zones empirically ®t theoretical curves generated by his model. Thus

estimates of the power-law exponent relating stress and strain are deduced. It is shown here how application of standard non-linear statistical

techniques to shear zone displacement data allows quantitative estimation of the power-law exponent together with con®dence intervals of

the calculated value. Application to natural shear zones veri®es the method and also validates the applicability of the model. It is hoped that

this will encourage ®eld geologists to apply the model of Talbot to natural examples. Thereby a database of power-law exponents for a wide

variety of lithologies and metamorphic grades may be assembled. q 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The primary objective of this paper is to enhance and

simplify the practical application of the ductile shear zone

model of Talbot (1999b) by introducing quantitative

methods for calculating the power-law exponent. The

model of Talbot (1999b) considers ductile shears as counter-

¯ow boundaries in pseudoplastic ¯uids. It is not the purpose

of this paper to review or enhance the model and the inter-

ested reader is referred to the original paper for more detail.

Talbot (1999b) estimated the power-law exponent for

natural shear zones by visually comparing suitably scaled

theoretical curves to photographs. Though this method is

valid, it is also subjective and requires a certain degree of

effort and trial and error, which may dissuade some from

applying the model. A relatively simple quantitative method

is presented below for estimating the power-law exponent

together with con®dence intervals for the calculated value.

It is hoped that this contribution removes a potential

obstacle to the widespread application of the model and

that ®eld data can be more rapidly and easily converted

into power-law exponent values. Thus a database of

power-law exponents from various lithologies deformed

during different PT conditions can be assembled. Such a

database may allow important conclusions regarding the

behaviour of rocks to be drawn and together with viscosity

data may enable de®nition of quantitative deformation

facies (Talbot, 1999a).

2. Development of the method

2.1. Non-linear parameter estimation

Talbot (1999b) has proposed that the relationship

between displacement (u) parallel to a half shear zone

(HSZ) and the normal distance from the boundary of a

HSZ (y) is as follows:

u

umax

� 1 2
y

w

� �n11

�1�

where umax represents the total displacement across the HSZ

and w is the total width of the HSZ and n is the power-law

exponent (see Fig. 1). Eq. (1) may be linearised by taking

natural logarithms of both sides, which after rearrangement

is given by

ln 1 2
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� �
� �n 1 1�ln y

w

� �
: �2�

However, statistical simulations of estimation of n using Eq.

(2) and standard linear least-squares regression indicates

that Eq. (2) violates fundamental assumptions of linear

regression and will not always give reliable results.

Non-linear methods for parameter estimation are there-

fore applied and developed for Eq. (1). For the sake of
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simplicity let

Y � u

umax

and X � y

w
�3�

and our model equation becomes

Y � f �X; n� � 1 2 Xn11
: �4�

Standard non-linear parameter estimation (Draper and

Smith, 1981) involves a ®rst-order Taylor series approxima-

tion giving

Y � f �X; ne21�1
2f

2n

����
n�ne21

�ne 2 ne21� �5�

Y � 1 2 Xne2111 2 Xne2111 ln�X��ne 2 ne21� �6�
where ne21 is a previous estimate for n (initially this may be

a guess) and ne is a better estimate for n. Eq. (6) is linear in

Xne2111 and Xne2111 ln�X� and is readily compared to the

linear equation

Y � a 1 bX1 1 cX2 �7�
where

a � 1 �8�

b � 21 �9�

c � 2�ne 2 ne21� �10�

X1 � Xne2111 �11�

X2 � Xne2111 ln�X�: �12�
By taking a set of m data points �Yi; X1i; X2i� where i � 1 to

m, standard multiple linear regression is applied to estimate

ne. The estimate for c in Eq. (7) is given by
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From Eq. (10) the following iterative relationship for ne is
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Fig. 1. (a) Schematic illustration of an ideal dextral shear zone with u, umax,

y and w identi®ed for the upper half. (b) A plot of the function Y � 1 2

Xn11 for several values of n. Shear sense is indicated to enable visualisation

of how these curves relate to shear zones in the ®eld.

Table 1

Results of application to natural shear zones

Example Source n Con®dence

interval

Estimate from

Talbot (1999b)

1 Talbot (1999b) ®g. 9(c). An older foliation distorted in gneisses at Cristallina,

Swiss Alps (originally from Ramsay and Huber, 1983, ®g. 3.18)

5.285 0.0002 5

2 Talbot (1999b) ®g. 9(c). As example 1 5.468 0.0002 5

3 Talbot (1999b) ®g. 9(d). HSZ in Archean migmatites near Holsteinborg, W.

Greenland

3.905 0.0009 5

4 Talbot (1999b) ®g. 11(d). The Alpine fault, New Zealand (originally from

Weijermars, 1987, ®g. 10)

2.774 0.0005 3

5 HSZ from Roan, Nord Trùndelag, west central Norway, in amphibolite facies

metasediments

2.51 0.05 N/A

6 As example 5 5.7 0.05 N/A

7 Dilational shear zone with an en eÂchelon vein array in bedded sandstones, Barley

Cove, West Cork, Ireland, see Fig. 2

1.11 0.01 N/A

8 As example 7 1.35 0.05 N/A



derived

ne � ne21 2 c �14�
Note that each time Eq. (14) is iterated a new value for c

must also be calculated. The computed estimate (denoted by

n̂) is equal to ne such that

ne 2 ne21j j , d �15�
where d is a small value. The smaller the value of d the

more accurate the solution becomes.

2.2. Error estimation

Although it may be possible to analytically derive a

simple expression for the error associated with n̂, it is felt

that the easiest approach for the current problem is to apply

the bootstrap method (Efron, 1979). Given a set of m

measurements for �Xi; Yi� the estimate n̂ is calculated as

described above. Typically application of the bootstrap

method involves generating another set of m measurements

�Xp
i ; Yp

i � by resampling the original dataset with replace-

ment. Another estimate n̂p may be calculated for �Xp
i ; Yp

i �.
Resampling may be performed an arbitrary number of times

such that a distribution of the estimate n̂p is derived and is

referred to as the bootstrap distribution. The bootstrap

distribution of n̂p tends to coincide with the actual (but

unknown) distribution of n̂. Hence the standard deviation

of the distribution of n̂p gives an estimate for the standard

deviation of n̂.
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Fig. 2. Dilational shear zone in bedded sandstone, Barley Cove, West Cork, Ireland. Thickened, sigmoidal veins in en eÂchelon, indicate dilation.

Fig. 3. (X, Y) data for example 1, together with ®tted theoretical curve for

n � 5:285.



In the current problem however, it is likely that datasets

will be quite small probably of the order of 20 measure-

ments or so. This is a potential problem for the bootstrap

technique described above. However, the following

approach, similar to the bootstrap method, is optimal.

Given a set of m measurements for �Xi; Yi� and an estimate

n̂, the residuals (ri) are calculated as follows:

ri � Yi 2 �1 2 Xn̂11
i �: �16�

The standard deviation (s) of ri is calculated. Resampled

datasets are generated as follows:

�Xp
i ; Yp

i � � �Xi; Yi 1 sN�0; 1�� �17�
where N(0, 1) is a randomly generated number from the

standard normal distribution. Thus by generating arbitrarily

many such datasets the error associated with n̂ is estimated

from the distribution of n̂p.

3. Application to natural shear zones

In this section the quantitative method for calculating the

power-law exponent is applied to four HSZs presented in

Talbot (1999b) and also for other HSZs observed by the

author. The method was not applied to all HSZs presented

in Talbot (1999b) because some photographs are too small

to allow accurate measurement.

Prior to applying the method, it is instructive to consider

Eq. (4) graphically in Fig. 1(b). Fig. 2 of Talbot (1999b)

presents a similar graph but, because these theoretical

curves are used for visual ®tting, u/umax is plotted on the

ordinate axis and y/w on the co-ordinate axis. Traditionally

Eq. (4) is plotted as shown in Fig. 1(b) and it is felt that this

plot, together with Fig. 1(a), clari®es how one should take

measurements in the ®eld or from photographs. y is

measured from the HSZ outer margin (i.e. low strain

portion), with increasing y-values occurring towards the

high strain inner margin. In contrast u is measured with

increasing values in the direction of shear.

A computer program has been written to do the calcula-

tion and is available as an electronic annex to this paper. The

program runs on Windows and allows data entry, saving to

®le and will calculate n̂ and the associated error. It is impor-

tant that measurements are taken according to Fig. 1(a) and

that both u and y vary from zero to their respective maxi-

mums. By noting that the method presented above involves

the natural logarithm of X, the value of y cannot be zero.

This means that one data point is usually omitted from the

analysis.

The results of applying the method to eight HSZs are

displayed in Table 1. The results are in strong agreement

with those of Talbot (1999b). However, differences in

values are probably related to the increased precision facili-

tated by the quantitative method. The data from natural

HSZs are well modelled by Eq. (4) and ®tted curves are

almost exact (see Fig. 3), which lends support to the applic-

ability of Talbot's model to ductile shear zones. If the model

were grossly incorrect one would expect a consistent

deviation from the model of Eq. (4).

Examples 1, 2, 3, 5 and 6 come from high-grade gneisses

and metasediments and give values for n . 2:5. In contrast

examples 7 and 8 come from relatively low-grade sedimentary

rocks and n is close to 1 in value. Although, it is tempting to

suggest that higher grade rocks behave as pseudoplastic

power-law ¯uids with n . 2:5, whereas low-grade rocks

behave almost like Newtonian ¯uids (n � 1), the data are

too few. In addition, examples 7 and 8 are from a dilational

shear zone and dilation may affect the value of n (Fig. 2).

Much more data are required before any hypothesis can be

formulated.

4. Conclusions

It is shown how to quantitatively apply Talbot's model to

natural shear zones using non-linear parameter estimation.

Values for the power-law exponent and corresponding

con®dence intervals were calculated for natural shear

zones. The results verify values calculated by visual

methods in Talbot (1999b) and also validate that natural

shear zones are accurately described by the model.

Acknowledgements

I thank Ms Kathleen O'Sullivan, Director, Statistical

Laboratory, UCC, Professor Christopher Talbot, Hans

Ramberg Tectonic Laboratory, Uppsala, Sweden and

Professor Finbarr O'Sullivan, Dept. Statistics, UCC, for

reviewing the contents of this paper and for making some

helpful suggestions. This paper bene®ted greatly from the

constructive reviews of Drs David Waltham, Graham

Yielding and Richard J. Lisle.

References

Draper, N.R., Smith, H., 1981. Applied Regression Analysis. Wiley, New

York.

Efron, B., 1979. The Bootstrap, the Jacknife and other Resampling Plans,

CBMS-NSF Regional Conference Series. SIAM, PA.

Ramsay, J.G., Huber, M.I., 1983. The Techniques of Modern Structural

Geology: Volume 1: Strain Analysis. Academic Press, London.

Talbot, C.J., 1999a. Can ®eld data constrain rock viscosities? Journal of

Structural Geology 21, 949±957.

Talbot, C.J., 1999b. Ductile shear zones as counter¯ow boundaries in

pseudoplastic ¯uids. Journal of Structural Geology 21, 1535±1551.

Weijermars, R., 1987. The construction of shear strain pro®les across

brittle±ductile shears. Annales Geophysicae 5B, 201±210.

K.F. Mulchrone / Journal of Structural Geology 23 (2001) 803±806806


